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Abstract— Ground Penetrating Radar (GPR) is one of the
most important non-destructive evaluation (NDE) devices to
detect the subsurface objects (i.e. rebars, utility pipes) and
reveal the underground scene. One of the biggest challenges in
GPR based inspection is the subsurface targets reconstruction.
In order to address this issue, this paper presents a 3D
GPR migration and dielectric prediction system to detect and
reconstruct underground targets. This system is composed of
three modules: 1) visual inertial fusion (VIF) module to generate
the pose information of GPR device, 2) deep neural network
module (i.e., DepthNet) which detects B-scan of GPR image,
extracts hyperbola features to remove the noise in B-scan data
and predicts dielectric to determine the depth of the objects,
3) 3D GPR migration module which synchronizes the pose
information with GPR scan data processed by DepthNet to
reconstruct and visualize the 3D underground targets. Our
proposed DepthNet processes the GPR data by removing the
noise in B-scan image as well as predicting depth of subsurface
objects. For DepthNet model training and testing, we collect
the real GPR data in the concrete test pit at Geophysical
Survey System Inc. (GSSI) and create the synthetic GPR data
by using gprMax3.0 simulator. The dataset we create includes
350 labeled GPR images. The DepthNet achieves an average
accuracy of 92.64% for B-scan feature detection and an 0.112
average error for underground target depth prediction. In
addition, the experimental results verify that our proposed
method improve the migration accuracy and performance
in generating 3D GPR image compared with the traditional
migration methods.

I. INTRODUCTION

Ground Penetrating Radar (GPR) has become an important
tool for subsurface non-destructive inspection [1]. By using
a GPR cart, subsurface inspection on bridge decks and other
concrete structures becomes a routine task in addition to vi-
sual inspection of surface defects [2], [3], [4], [5]. However,
current GPR inspection still relies on on-site engineers to
push the GPR cart along the survey grid lines to collect GPR
data. Furthermore, the conventional B-scan data is difficult to
interpret and requires experienced geophysicist to reveal the
underground objects. It is desirable to design a new GPR
system and migration algorithms to automatically collect
GPR data in random motion pattern and analyze the data
to reconstruct the underground objects.

When a GPR system is used for utility survey in out-
door inspection [6], [7], GPS is available to provide pose
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Fig. 1. 3D GPR migration and depth prediction is an challenging problem.
We aim to provide a systematic approach to reconstruct the subsurface
objects.

information [8], [9]. However, for indoor inspection, we still
need to find a way to obtain positioning information since
GPS could not be used in indoor environment. Besides,
the current commercial GPR cart must move along either
horizontal or perpendicular lines of a pre-defined survey
grid to trigger GPR scan by survey wheel to recover the
underground objects.

In order to generate 3D structure from the B-scan GPR
data, migration algorithm [10], [11], [12] is the most impor-
tant step to achieve this goal. Authors in [13] proposed a
hybrid migration method which is Fourier finite-difference
migration, it achieves the complex underground targets
reconstruction. A full-resolution GPR imaging method is
proposed in [14], by obtaining a spatial sampling of GPR
recording, noninvasive GPR imaging could be generated.
Moreover, [15] introduces a migration imaging method for
stepped frequency continuous wave (SFCW) GPR system,
which is based on compressive sensing algorithm. With this
approach, the delivery of high-quality GPR image of under-
ground region is prominent and robust. But, the migration
methods so far are not able to eliminate background noise
of GPR data.

Besides the migration and perception, GPR B-scan feature
detection is also a significant topic since each B-scan feature
defines subsurface target information. W. Al-Nuaimy et. al.
from University of Liverpool [16] first proposed underground
targets detection method by implementing Hough transform
on GPR signals. They use back-propagation method to
identify portions of the GPR image corresponding to target
reflections. Moreover, as an automatic feature recognition
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Fig. 2. Flow chart of the proposed DNN based GPR Migration framework. The whole system consists of three modules: visual inertial odometry
positioning system, GPR migration system and DepthNet neural network model for 3D subsurface targets reconstruction.

method, [17] applied center-surround difference detecting
and fuzzy logic in GPR feature detection, which improve the
tolerance of changes in viewpoint of GPR image. At last, as
for deep learning method, [18] [19] [20] [21] employed deep
convolutional neural networks (DNNs) to extract meaningful
signatures from 2D B-scan image and detect underground
objects. However, towards data-driven visual inspection of
subsurface targets reconstruction, there are still some chal-
lenges needed to be solved as following

• Firstly, the current GPR data collection still needs to
be finished along either horizontal or perpendicular
lines of a pre-defined survey grid triggered by GPR
survey wheel, which is not robust and efficient for data
collection.

• Secondly, without the GPR data de-noised processing,
background noise in GPR data would extremely effect
migration result.

• Finally, a proper permittivity for subsurface material
is highly relied on the pre-knowledge of geophysicist,
there is still lack of a method to predict the dielectric
based on GPR B-scan data.

To address the above challenges, this paper developed an
3D GPR migration and object detection method to enable
the localization and visualization of the subsurface targets.
We first propose using visual inertial fusion to estimate the
pose of the GPR device. GPR is triggered by survey wheel to
collect A-scan data. After synchronizing the A-scan data with
pose information, B-scan data is generated. Then, we employ
a Faster R-CNN [22] to locate the GPR B-scan hyperbolic
features and output the corresponding bounding boxes. Once
we got the Faster R-CNN detection results, we only keep
the B-scan data in bounding boxes to do the migration while
discard the rest of the data outside the bounding boxes, which
has the effect to remove the noise. We propose the DepthNet
to predict target depth. It takes the raw B-scan data with

different dielectric values as input, and predicts the target
depth in current GPR B-scan image. Finally, as depicted in
Fig.1, our system performs migration algorithm based on the
de-noised data, and reconstruct the target area based on our
predicted depth of subsurface targets.

II. SYSTEM ARCHITECTURE

Our proposed system architecture is illustrated in Fig.2,
which is composed of three modules: 1) visual inertial fusion
(VIF) module to generate pose information of GPR device,
2) DepthNet which detects B-scan of GPR image, extracts
hyperbola features to remove the noise in B-scan data and
predicts dielectric to determine the depth of the objects,
3) 3D GPR migration module which synchronizes the pose
information with GPR scan data processed by DepthNet to
reconstruct and visualize the 3D underground targets. Our
goal is to enable the 3D subsurface object reconstruction
and visualization, by means of our DepthNet based object
detection and migration methods.

A. Visual Inertial Odometry Positioning System

In order to provide pose information for migration, we
introduce visual inertial fusion (VIF) to obtain 6 DOF pose
of GPR device. The VIF pipeline is illustrated in Fig.2,
where we use Intel D435i realsense camera which has Inertial
Measurement Unit (IMU) and RGB-D camera embedded in
the system.

The VIF implementation is based on [23], where we fuse
the IMU and the visual odometry in a loosely-approach, that
is, the IMU performs pose estimation as the prediction while
take visual odometry information as correction.

We first take the RGB and depth frames as input to
initialize our pose and coordinate system. Meanwhile, IMU
measurement is fed as propagation to estimate the pose of
the IMU [24]. Finally, we fuse the pose calculated by visual
odometry as the observation information to update the state.



Therefore, the current camera pose Ti ∈ SE(3) could be
estimated[25].

B. GPR data collection and Labeling

In order to facilitate the understanding of the raw data to
help us to label the ground truth for our model training, we
perform field data collection at a well designed test facility,
i.e., Geophysical Survey Systems, Inc. (GSSI) test pit at
Nashua, New Hampshire. For all collected data, it comes
with the ground truth information including depth and length
information of utility pipes, rebars and tanks.

Our data collection follows the following steps which is
highly recommended by the GSSI site engineers,
• Firstly, we set up a grid area with equal line spacing to

cover the whole test pit.
• Secondly, we mount the camera on the GPR cart to

generate pose, then we use ROS to subscribe pose data
and GPR scan data in order to make them synchronized.

• Finally, we move the platform in a zigzag pattern that
defined in the first step and record both GPR sensory
and pose information. A total of 140 set of data were
collected and each set contains an average of 800 A-
scan data synchronized with pose.

Once we obtain all the field data, we label each single
measurement in two aspects. First, this paper transform all
the B-scan measurement into color image encoded with ’Hot’
colormap. Then, we annotate the Region of Interest (ROI),
that is, the hyperbolic feature with a bounding box which
is described by {xmin,ymin,xmax,ymax}. Besides the bounding
box, we also assign a dielectric value for each measurement
as the ground truth. The system is used to predict dielectric
is used to estimate the depth of the subsurface objects.

Fig. 3. (a) Test pit in GSSI’s garage, multiple targets buried underneath
the surface. (b) Test slab in GSSI’s slab room, multiple utility pipes inserted
in the slab.

C. GPR Migration Toward 3D Reconstruction

Migration is a hyperbolic shape analysis approach to
reconstruct the subsurface structure with 3D output, acting
in a spatial deconvolution manner which belongs to Back
Projection (BP) methodology [26]. Migration is highly relied
on dielectric of subsurface materials. It uses the dielectric
value to calculate the signal propagation velocity in the
medium from the hyperbolic features [27]. Once the velocity
is obtained, depth scale for subsurface targets could be
reconstructed.

Each GPR migration measurement, on a macroscopic
scale, can be described by the well-known Maxwells equa-
tions (see Equ.1) [28]. The first order partial differential

equations express the relations between the fundamental
electromagnetic field quantities and their dependence on their
sources [29].

∇ ·~D =
ρ

ε0

∇ ·~B = 0

∇×~E =−∂~B
∂ t

∇× ~H = µ0~J+µ0ε0
∂~E
∂ t

(1)

Where ~E is the electric field strength vector (V/m); ρ

ε0
is

the electric charge density (C/m3); ~B is the magnetic flux
density vector (T) while ~J is the electric current (A/m2); ~D
is the electric displacement vector (C/m2); t is time (s) as
well as ~H is the magnetic field intensity (A/m).

In Maxwells equations, the field vectors are assumed to be
single-valued, bounded, and continuous functions of position
and time. In order to simulate the GPR response from a
particular target or set of targets, the above equations have to
be solved subject to the geometry constraints of the problem
and the initial conditions.

For migration, the first step is to calculate the two-way
travel times (TWTT) of an electromagnetic wave from the
transmitter to subsurface targets at which reflection occurs
and returns back to receiver within the migration domain.

Ttr = 2 ·Dtar/v (2)

v =C/
√

D (3)

where D represents different dielectric, which is the con-
ductivity of the two materials (in this paper, we proposed a
learning approach to obtain this parameter III-B); C denotes
the velocity of light, Dtar means depth of subsurface targets
while Ttr means the two way travel time of GPR’s antenna.

In second step, we implement the extrapolation of elec-
tromagnetic wave back to time domain by using two-
dimensional Maxwell’s equations.

∂Ey(x,z, t)
∂ t

=−λEy(x,z, t)+
1

γ(x,z)

· [∂Hx(x,z, t)
∂ z

− ∂Hz(x,z, t)
∂x

]

+
1

γ(x,z)y(x,z, t)

∂Hx(x,z, t)
∂ t

= λ
∂Ey(x,z, t)

∂Z
∂Hz(x,z, t)

∂ t
= λ

∂Ey(x,z, t)
∂X

(4)

where Ey(x,z, t) is the electrical field in y component.
Hx(x,z, t) and Hz(x,z, t) are magnetic fields in x− and z
components respectively. λ represents the permittivity of
the subsurface of material. E ′y(x,z, t) denotes the observed
electric field in y direction. In this way, the Maxwell’s
equations are solved by introducing the electromagnetic wave



extrapolation, two-way travel times could be transferred into
the distance between the GPR’s antenna to the subsurface
targets.

The third step, we use Back Projection where the distance
calculated in the second step is taken as the radius r. At
each GPR measurement point, migration will take this point
as the center and generate a semi-hemisphere with radius
r. The potential target could be shown up on any points
located at the surface of this semi-hemisphere. Along with
the movement of GPR measurement, there will be more
semi-hemispheres with different radius get generated, their
intersection should be the location of the targets. By this
way, a 3D migration image could be generated.

Finally, we propose a new method on GPR migration. The
traditional way can only achieve pseudo 3D GPR imaging
because the GPR data is collected along either horizontal
or perpendicular directions of the pre-defined survey grid.
However, by receiving rotation information from VIF pose
estimation system, the GPR cart is able to collect the GPR
data in any directions, thus constructs real 3D GPR image.
In Equ.5, A pre denotes the coordinate of previous antenna
while A update represents the coordinate of updated antenna.
θ is the antenna rotation angle.

[
Aupdate x
Aupdate y

]
=

[
cosθ −sinθ

sinθ cosθ

]
×
[

Apre x
Apre y

]
(5)

D. DNN based Target Detection and Depth Prediction

Migration is a process that transforms the 2D B-scan into
the 3D GPR imaging. However, due to subsurface noise and
the uncertainty of the material dielectric, it is almost impossi-
ble to reconstruct the real 3D GPR imaging accurately. Thus,
we propose two models to solve the problems, which are
GPR object detection model and dielectric prediction model.
The details of the DNN network is illustrated in Fig.2, where
we use Faster R-CNN [30] to perform subsurface object
detection and a new DepthNet to predict the dielectric of
the subsurface material.

1) GPR Based Object Detection: In order to produce
a clear 3D GPR imaging from 2D B-scan data, we use
Faster R-CNN [30], an inception architecture with residual
connections network, to detect B-scan hyperbolic features.
Then, we take the detected bounding boxes as the region
of interest (RoI). The data outside the RoI are considered as
noise which is expected to be discarded in migration process.
Moreover, more object detection networks are used in this
section in order for comparison of Intersect of Union (IoU).
[31].

2) DepthNet for Depth Prediction: In our work, the
DepthNet outputs the dt(i), i∈{0,1, ...} for each of embedded
targets. As illustrated in Fig.2, the DepthNet consists of three
sub-nets, where the lowermost model predicts the dielectric
of the subsurface material, the uppermost and the middle
model are fully-connected nets which take the Faster R-
CNN bounding boxes and features as the input. The dielectric
model takes the raw B-scan image as input and resize it to
224× 224 while the encoder is Resnet101. Then DepthNet

Fig. 4. Proposed DepthNet framework. DepthNet consists of two parts:
(1) B-scan Detection and (2) Noise Cancellation.

takes the dielectric model output features and the other two
layers features as the input to predict the depth of each target.

Loss Design: After predicting the depth of each target and
the dielectric, we optimize the model by using a weighted
sum error approach to regress the model,

Lloss = λD
∑

n−1
i=0 (

Dyi−D yp
i )

n
+λD

∑
n−1
i=0 (

Dyi−D yp
i )

n
(6)

where D/Dyi is the ground truth depth, D/Dyp
i is the depth

prediction, λD and λD are the weight for dielectric and depth
loss respectively. In this paper, we employ mean square error
loss to regress the depth prediction model.

E. Target Visualization

In order to visualize and reconstruct the subsurface ob-
jects, we combine DNN based GPR images with our pro-
posed migration method. As it is illustrated in Fig.4, we
considered detected B-scan hyperbolic features and the cor-
responding bounding boxes as the region of interest (RoI).
Then, only the GPR B-scan data in RoI would be fed
into migration processing in order to obtain the de-noised
subsurface objects. In this way, we can easily estimate
and localize the subsurface objects as well as the depth
information for each targets, where the depth information is
what also obtained from DepthNet. Besides, the noise map
we recovered from the removed noise is also considered as
an evaluation of our proposed system.

III. EXPERIMENTS

We verify our GPR underground objects reconstruction
system on the dataset we created according to Section II-
B. We illustrate our newly proposed migration algorithm
and demonstrate the effectiveness the 3D GPR subsurface
reconstruction by using our learning based approach. For all
these evaluations, they are conducted on an GPU server, with
Intel Core i9-9900K 3.2GHz CPU, GeForce RTX 2080 Ti
GPU, and 32GB RAM.



Fig. 5. Front view of fine tune migration method compared with traditional migration method.

Fig. 6. Proposed migration results in GSSI’s test pit compare with ground
truth and traditional migration methods. (a) shows the target reconstruction
result used by proposed migration method; (b) and (c) shows the limitation
of traditional method; (d) shows the ground truth of subsurface targets,
which are located at different layers with different depth. All the graphs
show above are in top view.

A. Performance of Migration

In order to verify the migration method we proposed
in this paper, a 3D subsurface image of test pit is first
generated and compared with the ground truth provided by
GSSI. The pose information obtained from VIF estimation
system and the GPR scan data are considered as the input
for migration. The target in the Fig.6 is a right angle shape
pipe, which located at 0.9 meter beneath the surface of test
pit. By implementing the traditional method, targets could
only be reconstructed either in horizontal direction or vertical
direction, which will make the migration result be not intact.
However, different dielectric value could also influence the
accuracy of migration. Due to this reason, the necessary of
the depth prediction of underground targets will be testified
in the next section.

B. Performance Comparison of GPR Target Detection and
Depth Prediction

Object Detection Comparison
Table.I shows the results of B-scan feature detection

compared with different models [21], [30], [32], [33]. The
results show that Faster R-CNN resnet101 has the best
performance on GPR based object detection. Once we obtain
the detection results, our proposed DepthNet is implemented
as the dielectric prediction, that is actually, subsurface targets



TABLE I
DETECTION PERFORMANCE COMPARISON.

mAP@IoU AR
Models 0.75 0.50 10 100

YOLO v3 89.6 89.3 90.2 91.2
ssd mobilenet v1 85.8 88.6 84.2 84.9
ssd mobilenet v2 86.1 87.8 87.7 87.0
ssd Inception v2 88.4 90.1 88.9 85.6

ssdlite mobilenet v2 82.2 83.3 89.2 89.3
Faster R-CNN Inception v2 89.3 89.3 92.6 91.6

Faster R-CNN resnet101 90.5 89.0 92.2 92.2
Faster R-CNN resnet50 89.6 89.8 90.8 91.9

depth prediction. In Table.I, mAP@IoU = 0.75 is mean
average precision at 75% IoU, mAP@IoU = 0.50 is mean
average precision at 50% IoU, AR@10 is average recall with
10 detections, AR@100 is average recall with 100 detections.

Network Training

Fig. 7. 3D target migration map compared with the original 3D target
model. (a), (c) are the 3D model of synthetic slabs while (b), (d) show the
proposed 3D target migration results.

We trained DepthNet on a RTX 2080Ti GPU server and
used Pytorch to deploy the algorithm. For the DepthNet, we
used the stochastic gradient decent (SGD), with an initial
learning rate at 4e−5, momentum as 0.9, and weight decay
of 5e−5. The model loss at last converged to 0.0524

Accuracy Evaluation
We perform the dielectric prediction validation using the

test data from the GPR dataset we created in Section.II-
B. For testing purpose, we use total of 50 B-scan images
which have the different dielectric. The accuracy of the
model is tested from two different aspects: 1) the individual
accuracy for B-scan feature dielectric prediction; 2) the
average accuracy of the depth prediction which is 0.112.

Visualization for Proposed Method
To visualize the results of the GPR based feature detection,

which used as noise cancellation for GPR migration, this
paper first shows the ground truth of the two different
synthetic slabs created by gprMax. Then, in each B-scan raw
data, we overlays the detected bounding boxes on it. Besides,
the predicted dielectric also be registered in migration as
the pre-processing for 3D subsurface targets reconstruction.
Then, we compared the original migration result and noise
cancelled migration results in front view, since we could also
compare these results with the bounding boxes overlapped
B-scan data. At last, the cancelled noise images are also
attached in order to validate our proposed method. In Fig.5
(a), (f) shows the ground truth of the two synthetic slabs
generated by gprMax. This two slabs are embedded with
conductive and dielectric rebar, steel pipe, another rebar and
PVC pipe with different size from left side to right. Then
(b), (c) and (g), (h) compares the migration results before
implementing B-scan feature detection and after detection
mentioned in II-D. At last, (e), (j) show the noise we
cancelled with proposed method.

C. 3D Object Migration Map

This section uses the results from the previous two sec-
tions to generate the 3D object migration map. First, our
proposed migration method provide the ability for real 3D
subsurface targets reconstruction. Then, by detecting the
B-scan features, the noise in B-scan raw data could be
removed. Moreover, our proposed DepthNet could provide
the depth information based on the input B-scan raw data.
By combining these three methods, Fig.7 shows the final
comparison results of the 3D targets reconstruction.

IV. CONCLUSIONS

This paper introduces an DNN based 3D GPR imaging
system, which is able to locate and visualize the subsurface
objects. First, this system implements visual inertial fusion
to estimate the pose of the GPR sensor. Then, we propose an
improved random motion migration method which eliminates
the limitation of current GPR data collection procedure
which requires the straight line motion along survey grid.
After that, DNN based target detection is employed, by
only processing the B-scan data in detected bounding boxes,
background noise in raw B-scan image could be removed.
Finally, the proposed DepthNet is used to predict the depth of
subsurface objects, according to the estimation of dielectric
characteristic of the material. The experiments show the
effectiveness of our proposed 3D subsurface objects recon-
struction methodology.
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