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Abstract— Ground Penetrating Radar (GPR) is one of the
most important non-destructive evaluation (NDE) instruments
to detect and locate underground objects (i.e. rebars, utility
pipes). Many of the previous researches focus on GPR image-
based feature detection only, and none can process sparse
GPR measurements to successfully reconstruct a very fine and
detailed 3D model of underground objects for better visual-
ization. To address this problem, this paper presents a novel
robotic system to collect GPR data, localize the underground
utilities, and reconstruct the underground objects’ dense point
cloud model. This system is composed of three modules: 1)
visual-inertial-based GPR data collection module which tags
the GPR measurements with positioning information provided
by an omnidirectional robot; 2) a deep neural network (DNN)
migration module to interpret the raw GPR B-scan image
into a cross-section of object model; 3) a DNN-based 3D
reconstruction module, i.e., GPRNet, to generate underground
utility model with the fine 3D point cloud. In this paper, both
the quantitative and qualitative experiment results verify our
method that can generate a dense and complete point cloud
model of pipe-shaped utilities based on a sparse input, i.e.,
GPR raw data, with incompleteness and various noise. The
experiment results on synthetic data as well as field test data
further support the effectiveness of our approach.

I. INTRODUCTION

Ground penetrating radar (GPR) has been widely used as a
remote sensing technique in geophysical and civil engineer-
ing applications to provide effective radargram image and
detection of underground structures. Among various types
of none-destructive evaluation (NDE) techniques, such as
acoustic, infrared, thermography [1], GPR gains its fame due
to the high resolution capability and applicability in different
fields detection. Specifically, GPR could not only evaluate
the location and condition of underground utilities such as
rebars, pipes and power cables, but also reveal the relative
size of the subsurface objects.

Thanks to the advent of Deep Neural Networks appli-
cations in the GPR area, learning-based architectures are
capable of directly operating on GPR data. DepthNet [2] in-
troduces the first deep-learning-based network for dielectric
prediction of GPR data. Moreover, with the development in
learning-based shape completion task, such as L-GAN [3],
PCN [4], FoldingNet [5] and PF-Net [6], it allows us to
reconstruct 3D point cloud representation for underground
objects.

However, in the practical GPR applications, the challenge
of such a technique mainly lies in the following factors:

1 Electrical Engineering Department, The City College of New
York, New York, USA. jfeng1,lyang1@ccny.cuny.edu,
ehoxha000,ssanakov,sstonik@citymail.cuny.edu,
the corresponding author is jxiao@ccny.cuny.edu

(a) The omnidirectional robot for visual-based GPR data collection,
where a GPR antenna is installed on the bottom of the robot chassis.

(b) Two different view angles of a concrete slab with two utility pipes
buried in.

(c) The left part shows the GPR data collection results with B-scan
images while the right part shows the GPR data interpretation results
which indicate the cross-section of utility pipes.

(d) The input indicates the coarse point cloud which represents the
GPR interpretation results, while the output is a coarse-to-fine format
by implementing our proposed GPR model reconstruction approach.

Fig. 1. Our proposed GPR-based point cloud model reconstruction system,
where (a) demonstrates our robotics GPR data collection platform (b)
shows the layout of underground utilities. GPR data is firstly collected with
a loosely spacing distance. Then, by implementing a GPR interpretation
method, we can convert GPR raw data into a cross-section image which
matches the utilities, as depicts in (c). At last, by representing interpretation
results into 3D point cloud format, (d) indicates that our proposed method
could complete the 3D coarse point cloud input into a dense representation.
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data collection, GPR image interpretation, and GPR data
visualization. Specifically, current GPR data collection re-
quires inspector moves GPR device along grid lines without
any rotations, which is hard to implement by regular ground
mobile robots which cannot move sideway. As for the inter-
pretation of the complex GPR data, it requires experienced
professionals to interpret the GPR B-scan hyperbolic features
with trained eyes. In addition, the reconstruction model
produced by conventional migration algorithm contains too
much noise and not easy to understand.

To address these challenges, we propose a novel 3D model
reconstruction system based on GPR data collected by an
omnidirectional robot to visualize the underground utilities,
which is illustrated in Fig.1. The key difference between
our method and existing ones are that only a small amount
of GPR data is required for 3D model reconstruction, in
the meanwhile, it still achieves a better visualization result
modelled by 3D point clouds.

The main contributions of this work are:

• an automated GPR data collection solution by using an
omnidirectional robot, which holds the GPR antenna on
the bottom and move forward, backward and sideways
without any rotations to collect GPR data.

• a DNN model that operates and interprets the GPR B-
scan image into a cross-section of underground objects
model.

• a novel 3D reconstruction model that takes sparse GPR
measurement as input and complete it with a dense point
cloud which is able to present the fine details of the
object structure.

II. RELATED WORKS

Our work is motivated by a number of related works which
aim to interpret GPR radargram data and the coarse-to-dense
3D point clouds completion.

Mathematical Methods on GPR Data Interpretation:
The mathematical-based technique which serves as the tradi-
tional GPR imaging tools, enabling to convert the unfocused
raw B-scan radargram data into a focused target, is called mi-
gration. Migration methods can be roughly categorized into
Kirchhoff migration, the phase-shift migration, the finite-
difference method and back-projection algorithm.

Kirchhoff migration method [7] is first introduced in
1970s, [8] tests Kirchhoff migration method by using both
synthetic and real GPR data, the results show that though
the localization of the buried targets could be achieved,
the information about target shape and extension are not
provided by implementing this method. In the meanwhile,
[9] represents that Kirchhoff migration method is capable to
focus on the target position, however, it’s processing speed
is slower than the rest of migration approaches.

Similar to Kirchhoff migration, phase-shift migration is
first proposed and applied in 1978 [10], this is also a
mathematical-based method which utilizes the ESM concept
[11]. For comparable accuracy, this approach to migration
is computationally more efficient than finite-difference [12]

approach, which is designed for the geometry of a single
radargram source with a line of surface receivers.

Unlike the above conventional migration methods, the
back-projection algorithm (BPA) back projects the emitted
signal based on Electromagnetic waves travel path and the
associated travel time, analogous to the traditional back-
projection methods in computer aided tomography [13]. By
implementing BPA, [14] conceals object detection through
Millimeter-wave 2D imaging methods and works well both
on metallic and dielectric types. BPA is also exploited for
imaging of water leaks from buried pipes [1].

Machine Learning Methods on GPR Data Interpre-
tation: In addition to the many researches that focus on
the mathematical-based GPR migration methods, machine
learning based methods are also widely studied to interpret
GPR data, which could be catergorized into Hough transform
method, SVM method and deep neural network (DNN)
methods.

In 2000s, Hough transform method was first applied for
underground targets detection [15], however, this method is
not effective on complex curves and diverse signals [16].
Furthermore, SVM applications play a important role in
GPR studies on GPR imaging classification [17], [18] for
underground materials.

Compared with conventional machine learning related
methods, more and more DNN-based implementations are
applied in GPR data interpretation due to its higher accu-
racy and better efficiency capability, especially in detection,
localization and classification of hyperbolic features in GPR
radargram image [2], [19]–[21].

Deep Learning on 3D Point Cloud Completion: Point
cloud has been widely used in 3D vision related researches,
which become one of the hottest topics in deep learning field.
Specifically, PointNet and its following works [22]–[24] is
the pioneer in this area and still be the state-of-the-art until
now. It solves the variance of permutation and robustness
exists in point clouds, by proposing a symmetric aggregation
function and pointwise multilayer perceptrons.

By taking advantage of the above works and [5], [4]
proposes a point cloud based completion network, which
combines the merits of PointNet and FoldingNet, to complete
point cloud in a coarse-to-fine fashion. In addition, [6]
presents a multi-stage completion loss to make a detailed
completion in pointwise 3D shape. Moreover, a encoder-
decoder architecture is designed in [25] to achieve the shape
completion task. These methods all achieve a good result on
both completion accuracy and noise robustness.

III. METHODOLOGY

In this section, we discuss the proposed GPR-based 3D
model reconstruction system. Firstly, the vision-based robotic
GPR data collection module provides a 6-DOF pose infor-
mation of the GPR data, and it allows robot moves forward,
backward and sideward without rotation during GPR data
collection. Secondly, we interpret the GPR B-scan images
into the cross-section of underground object model, and
representing them as point cloud. Thirdly, a coarse 3D map is



generated by registering the cross-section point cloud into the
3D space, where the 3D positioning information is obtained
from the GPR data collection module. At last, we propose
learning-based method to complete the sparse point cloud,
thus provide dense model for better visualization of the
underground utilities.

A. Visual-Inertial Robotic GPR Data Collection Module

To automate the GPR data collection, we developed an
omnidirectional robot for the inspection of underground
utilities. Our robot uses triangle-shaped chassis and three
Mecanum wheels to move in any direction, it avoids rotation
motion because it may cause the failure of vision-based
positioning. As depicts in Fig.1(a), our robot motion meets
the following relation:vw1 drv

vw2 drv
vw3 drv

=

 1 0 −d
cos 2π

3 sin 2π

3 −d
cos −2π

3 sin −2π

3 −d

vx
vy
ω

 (1)

where vw1 drv, vw2 drv, vw3 drv represents the linear velocity
of each wheel, d indicates the distance between the center
of a wheel and the center of the robot body. vx, vy and ω

represent the linear velocity and angular velocity of the robot
body respectively.

In order to provide pose information for GPR B-scan data,
the robot also carries an Intel NUC on-board computer and
an Intel D435i RGB-D camera, which has a 6-axis IMU
embedded in, to provide accurate and robust pose estimation
for GPR sensor. We further fuse the IMU and the visual
odometry data to improve the positioning accuracy by using
a loosely-coupled approach, which was introduced in our
previous work [2].

B. GPR Data Analysis

GPR antenna transmits a pulse of high-frequency electro-
magnetic (EM) wave in the ground [26] and waits for the
EM waves echos. The signal emitted from GPR antenna is
affected by EM characteristics, such as the dielectric of the
subsurface objects or materials.

Fig. 2. The CAD model in the left indicates a slab with three utilities
buried in while the dot line on the top of the slab represents the motion
direction of GPR device for data collection, which generates a B-scan image
shows as in the right figure. The round shape features in the B-scan image
indicates the cross-section of the utilities in the 3D model.

As depicted in Fig.2, the dotted line on the top of the slab
which has three utilities embedded in, indicates the trajectory
of a GPR device for data collection. Therefore, when GPR
antenna scans along the perpendicular direction of the pipes,
the composition of received signals can be identified as the

hyperbolic feature because of the different dielectric between
underground material and utilities. As shown in the right side
of the Fig.3, the image generated by a set of the transmit
pulses is called B-scan, where the around blue feature on
the B-scan image indicates the cross-section of the utilities.

C. GPR Data Interpretation

In this section, we introduce a learning model, which is
a simple version of our previous work, MigrationNet [27],
to interpret subsurface objects. Compared with the existing
learning-based method of GPR, our approach does not focus
on the detection of hyperbola feature in the raw B-scan im-
age, which is not helpful enough to GPR data interpretation
task. MigrationNet aims at inferring the migration result by
interpreting B-scan measurement.

Fig. 3. Framework of the MigrationNet. The input is the raw GPR B-
scan image. Then, the features are extracted through the multiple resolution
encoder and further concatenated into 1536 channels. The encoder consists
of several de-convolutional groups, the global feature is produced by
concatenating local features from MRE through skip-connection operation
indicated by ⊕ while the numbers 1-9 indicate the layers which are used
for concatenation, and finally decoded into a binary migration image.

It illustrated in Fig.3, the input of MigrationNet is raw
GPR B-scan data and it connects to our proposed Multiple
Resolution Encoder (MRE).

The proposed encoder inherits the context capture ability
by combining two convolution layers and one max-pooling
layer. We follow the down-sampling group to encode the
input data into a feature map with the same size, where size
= [M x N x 512], M and N indicates the height and width of
GPR B-scan image respectively. In details, to get the same
size of output feature, our input data is extracted into the
different resolution by MRE. Specifically, at the top layer of
MRE, the input data follows a down-sampling group where
the kernel size of max-pooling layer is 8. In the middle layer,
the kernel size of the first max-pooling layer is 4 while the
rest of pooling layers’ kernel size are all equal to 2. At the
bottom layer, all the kernel size of max-pooling layers in the
down-sampling groups are 2 and it allows the final output
feature map has the same size in each input. At last, all three
feature maps are then concatenated together as the global
feature map, where size = [M x N x 1536]. This design
brings the combined latent feature to contain more detailed
information of the input data.

The decoder takes global feature map as input to predict
a [M x N x 1] binary image, with the white indicates the
pipe and the black indicates the background. In details, our



Fig. 4. GPRNet framework. The input is a sparse point cloud which represents the cross-section of utilities, the encoder abstracts the input as a global
feature and the decoder recovers the global feature to a dense point cloud.

decoder consists of 5 up-sampling group, and each group
contains two convolutional layers and one deconvolutional
layer. Besides, we also take the advantage of skip connec-
tions as illustrated in Fig.3.

D. GPRNet for Underground Utilities Reconstruction

Section.III-C facilitates to interpret raw B-scan into a
cross-section image, however, MigrationNet only provides
the slices of utilities’ structure. Nevertheless, by taking ad-
vantages of the pose information obtained from Section.III-
A, we could register the interpreted slices into the 3D space,
to make up a sparse point cloud of the subsurface objects.
Thus, we need to further complete the sparse point cloud
map to recover the whole structure of utilities.

Inspired by the 3D point cloud completion works [4]–
[6], [25] in computer vision area, we proposed a model,
i.e. GPRNet, to address the challenge mentioned above. We
firstly represent the interpreted image, which indicates the
cross-section of the underground utilities, as the 3D point
cloud data format. Then, our encoder-decoder based network
would complete the sparse input to generate a smooth and
fine 3D point cloud reconstruction map.

1) Encoder Design: Our proposed encoder is an extended
version of PCN [4], it takes charge of representing the
geometric information in the input point cloud as the global
feature vector v∈Rn where n= 896. In addition, our encoder
inherits the feature extraction ability by implementing Point-
Net layer, which is a combination of the convolutional multi-
layer perceptron (MLP) layer and the max-pooling layer.
Compared with the previous methods [22], [23], our encoder
could extract multiple resolution information of the input
data, which leads a better performance on small structure
completion.

Specifically, by passing through three MLP layers which
have the different dimensions, our input m× 3 point cloud
data, where m is the number of the points and set to 1500, is
firstly encoded into three point feature vectors fi, where size
fi := m× 64, m× 128, m× 256 for i = 1,2,3 respectively.
Then, a max-pooling layer is performed on each extracted

feature to obtain three intermediate features g j=1,2,3 with
multiple dimensions [64−128−256]. Furthermore, we firstly
concatenate each point feature vector fi and each intermediate
feature g j together to obtain a expanded feature, which
includes the feature information at different level. In addition,
each g j is concatenated to each fi to obtain the feature matrix
F. At last, F is passed through another PointNet layer to
generate the global feature vector v.

2) Decoder Design: Fully-connected decoder [3] is good
at predicting the global geometry of point cloud, however, it
ignores the local features. FoldingNet decoder [5] is good at
generating a smooth local feature. Therefore, by combining
the above decoders, we design our decoder as a hierarchical
structure [6].

In the primary decoder layer, the global feature vector
is extracted into three feature vectors (size:=256,128,64
neurons respectively) by passing through the fully-connected
layers, which is responsible for generating point cloud in
different resolutions. Then, these three vectors are expanded
into three local feature matrices (size:= 256×3,128×3,64×
3). In the meanwhile, in order to get a better structure sense
from global feature, the global vector is reshaped into the
same size of the local feature matrices through the MLP
layers, as it is shown in Fig.4. Then, the global feature and
local feature are concatenated together as a 896×3 matrix.
At last, by taking advantages of folding operation, a patch of
9 points is generated at each point in the point set generated
from last step. Thus, we can obtain the detailed output
consisting of 896 ∗ 9 points. A dense point cloud output is
then generated from our multi-resolution decoder, based on
the fully-connected and folding operations.

Thanks to this multi-resolution architecture, high-level
features will affect the expression of low-level features, and
low resolution features can contribute to form the global
feature, which provide a sense of local geometry of the shape.
Our experiments show that the prediction of our proposed
decoder has fewer distortions and better detailed geometry
of the shape.



3) Loss Design: To constrain and compare the difference
between the output point cloud S and the ground truth point
cloud Sgt , an ideal loss must be differentiable with respect
to point locations and invariant to the permutation of point
cloud. In this paper, we use Chamfer Distance (CD), which is
proposed by Fan et al. [28]. It calculates the average closest
point distance between S and Sgt , that meets the requirement
of the above conditions:

dCD(S,Sgt) =
1
S ∑

x∈S
min
y∈Sgt
‖x− y‖2 +

1
Sgt

∑
y∈Sgt

min
x∈S
‖y− x‖2 (2)

The Chamfer Distance finds the nearest neighbor in the
ground truth point set, thus it can force output point clouds
to lie close to the ground truth and be piecewise smooth.

IV. EXPERIMENTAL STUDY

To evaluate our approach, we perform 725 tests on NDT-
GPR dataset [2] while 120 automated field tests using GPR-
Cart. The field tests of robotic GPR inspection system was
conducted on a concrete slab at River Edge, NJ, USA. In
this section, the effectiveness and robustness of our 3D
reconstruction method as well as the results of on-site tests
are discussed in details.

A. Model Training and Evaluation

Dataset: In this paper, we use synthetic GPR dataset
proposed in [2]. This dataset builds a synthetic testing
environment which simulates the real NDT condition, where
rebars, utilities and PVC pipes are buried underneath the
surface. This simulated environment mimics this property
and involves pipe-shaped objects with different location as
well as the size. Noticed all of the simulated objects have a
round cross section. Specifically, this dataset contains 1628
B-scan data which could convert into images, as well as
their cross section images as the ground truth. After register
each cross-section image into the 3D point cloud, each point
set contains 1500 points while each ground truth point set
contains 8064 points.

Network Training: We train our model on a server with
Intel Core i9-9900K 3.2GHz CPU, GeForce RTX 2080 Ti
GPU, and 32GB RAM. Among all the 1628 model of GPR
data, we reserve 100 models for validation and 150 models
for testing, the rest is used for training. Notice that our
models are trained for 100 epochs with an Adam optimizer.
The initial learning rate is set to 0.00005 while the batch size
is 16. The weight decay is 0.7 for every 50000 iterations.

B. Model Reconstruction Study

Baseline Comparison: In order to assess the effectiveness
of our proposed method, we compare our baseline against
PCN and PF-Net. Since related point cloud completion works
are trained with different datasets, we use the GPR B-
scan dataset [2] which matches our testing condition so
that we can evaluate the above methods quantificationally.
Specifically, we use two evaluation metrics to compare the
methods mentioned above, which are the average squared

distance [3] and the L1 distance from each point between
output point cloud and the ground truth. It need to be noted
that the number of points in the predicted output is set to
8192 while the input number of points are 1500.

TABLE I
EVALUATION PERFORMANCE COMPARISON WITH DIFFERENT

BASELINES. CD: AVERAGE SQUARED DISTANCE BETWEEN TWO POINTS,
L1 : NORM DISTANCE BETWEEN TWO POINTS

GPRNet PCN PF-Net
CD 6.214 6.965 7.005
L1 22.97 24.90 33.68

The results in Table I shows that our proposed method
outperforms other methods in different GPR-based inspec-
tion environments, note that the Chamfer distance is reported
multiplied by 103 while L1 distance is scaled by 100. Note
that both the errors are evaluated by the united distance. In
addition, we could also visualize the output utilities point
cloud generated by all the methods. Compared to other
methods, the prediction of our method outperforms the other
methods in spatial continuity and shape accuracy level.

Fig. 6. Noise robustness comparison result. Pictures (a)-(c) indicate the
model, raw input and ground truth respectively. The second line represents
the Gaussian-white-noised input, where noise variance are 0.01, 0.05, 0.1,
0.2 respectively, while pictures (h)-(k) in the last line demonstrate the
predicted results of the noised input (d)-(g).

TABLE II
NOISE ROBUSTNESS EVALUATION ON GPRNET WITH TWO METRICS.

CD distance L1 distance
Variance & Noise density = 0.01 6.350 23.029
Variance & Noise density = 0.05 6.715 24.851
Variance & Noise density = 0.1 7.374 25.639
Variance & Noise density = 0.2 7.765 26.589

Noise Robustness: To evaluate the effectiveness of our
method under different sensor noise level, we perturbed the
input sparse point cloud with multiple Gaussian white noise
levels, where the standard deviations are 0.01, 0.05, 0.1
and 0.2 respectively. For each data set, we further compare
average squared distance and L1 distance between the noised



Fig. 5. The comparison of completion results between other methods and our network. From left to right: the slab CAD model, input data, PCN [4],
PF-Net [6], our method and the ground truth. Based on the results, our method could reconstruct a better 3D model for visualization.

(a) The ground truth of the concrete slab. (b) The design details of the concrete slab. (c) 3D reconstruction result of the field test.

Fig. 7. A field test on a concrete slab which has multiple utilities embedded in, as demonstrated in (a) and (b). Our robot collected 10 groups of GPR
data along the straight lines perpendicular to the pipes. As shown in (c), our input data is coarse and represents the cross-section of the utilities while the
predicted result indicates the 3D model of the embedded pipes.

data input and ground truth. As illustrated in Table.II and
Fig.6, we could find our proposed method achieved higher
robustness against the noise.

C. Dataset Test and Field Test

In this section, we evaluate the robotic GPR inspection
system with both synthetic dataset and field test. The perfor-
mance of underground utilities reconstruction is illustrated in
Fig.5, where the model of the synthetic slabs, coarse input
point cloud data, predicted output data and the ground truth
are provided. The field test result is also demonstrated in
Fig.7, where pipes with different size are colored respec-
tively. In this test, we drive our omnidirectional robot with a
sparse line spacing, and record the pose information with our
visual-inertial module. Specifically, our robot moves forward,
backward and sideways without any rotations, to collect GPR
data along its trajectory. By comparing the reconstructed 3D
map with the ground truth of the slab in our test pit, the
effectiveness of proposed system is well verified.

V. CONCLUSION

This paper presents a novel GPR-based 3D model re-
construction system for underground utilities by using an

omnidirectional robot. Our omnidirectional robot allows
GPR device move forward, backward and sideward with-
out rotations. The proposed system is able to reconstruct
underground utilities model represented as 3D point cloud.
According to the experiments, our approach could obtain a
fine 3D model for a better visualization while we could find
out our method has a higher robustness against noise.
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